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4Centro de Astro-Ingenieŕıa, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Santiago, Chile9

5Ecology and Evolution, Research School of Biology, Australian National University10

6Centre for Astrophysics Research, University of Hertfordshire, Hatfield, AL10 9AB, UK11

7Mathematical Sciences Institute, Australian National University, Canberra ACT 0200 Australia12

8Physics Department, University of Surrey, Guildford GU2 7XH, United Kingdom13

9Departamento de F́ısica, Universidad de Santiago de Chile, Av. Victor Jara 3659, Santiago, Chile14

10Millennium Institute of Astrophysics, Av. Vicuña Mackenna 4860, 82-0436 Macul, Santiago, Chile15

11Center for Interdisciplinary Research in Astrophysics and Space Exploration (CIRAS), Universidad de Santiago de Chile, Santiago,16

Chile17

12Leverhulme Centre for Human Evolutionary Studies, Department for Anthropology and Archaeology, University of Cambridge, CB218

1QH, UK19

13Institute of Astronomy, Cambridge, UK20

14Institute for Astrophysics, FORTH, Crete21

ABSTRACT22

Phylogenetic methods have long been used in biology, and more recently have been extended to other23

fields – for example, linguistics and technology – to study evolutionary histories. Galaxies also have24

an evolutionary history, and fall within this broad phylogenetic framework. Under the hypothesis that25

chemical abundances can be used as a proxy for interstellar medium’s DNA, phylogenetic methods26

allow us to reconstruct hierarchical similarities and differences among stars – essentially a tree of27

evolutionary relationships and thus history. In this work, we apply phylogenetic methods to a simulated28

disc galaxy obtained with a chemo-dynamical code to test the approach. We found that at least 10029

stellar particles are required to reliably portray the evolutionary history of a selected stellar population30

in this simulation, and that the overall evolutionary history is reliably preserved when the typical31

uncertainties in the chemical abundances are smaller than 0.08 dex. The results show that the shape32

of the trees are strongly affected by the age-metallicity relation, as well as the star formation history33

of the galaxy. We found that regions with low star formation rates produce shorter trees than regions34

with high star formation rates. Our analysis demonstrates that phylogenetic methods can shed light35

on the process of galaxy evolution.36

Keywords: Galaxy abundances — Galaxy stellar content — Interdisciplinary astronomy37

1. INTRODUCTION38

Several areas of evolutionary science investigate evolutionary histories with phylogenetic methods, including biology,39

language and astronomy (Baum et al. 2005; Gray et al. 2009; Ricker et al. 2014; Jofré et al. 2017; Yaxley & Foley40

2019; Jackson et al. 2021; Bromham et al. 2022). Phylogenetic methods were originally developed in the context of41
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biology studies, when Charles Darwin described patterns of descent among organisms as an evolutionary tree (Darwin42

1859). It was a century later that the DNA was identified as the information that is passed from one generation to the43

next, connecting the different life forms in the hierarchical way that Darwin had illustrated. This happens because44

the DNA replication between progenitor and offspring is not perfect, e.g. the new DNA is modified. Modifications45

accumulate over time, causing the life forms to differ more with time. If one population is divided and each subgroup46

is isolated, their evolution and cumulative modification will occur independently. This process is named diversification47

and produces a hierarchy. Nowadays, DNA is widely used as input to build phylogenetic trees allowing the exploration48

of shared evolutionary histories of an immense variety of living organisms (Bromham 2008; Yang 2014).49

This approach considers two main concepts. The first concept is heritability and the second is descent with modi-50

fication. Heritability considers that there is information passed from one generation to the next one. Descent with51

modification stands for the knowledge that a characteristic transferred from one generation to the next one suffers52

small changes. These changes accumulate over time and if there is also diversification, an hierarchy in similarity is53

formed. Due to hierarchical similarity, related organisms have more similar characteristics.54

Chemical evolution of galaxies respects both the concept of heritability and descent with modification. Chemical55

evolution in galaxies is linked to stellar nucleosynthesis (Burbidge et al. 1957; Tinsley 1979; Matteucci 2012). At56

the last stages of evolution, stars pollute the interstellar medium (ISM) with the chemical elements they synthesized57

during their lifetimes, causing the modification of the chemical composition of the ISM of their parent galaxy. The58

enriched ISM will later give origin to new generations of stars that are chemically altered with respect to the previous59

generation. A large fraction of the stars formed in each episode are low-mass objects, hence they live longer than60

this cycle of new stars forming and their atmospheres preserve the chemical composition of their birth environment.61

In this way, chemical abundances of low-mass stars can be considered as a proxy for the ISM’s DNA (Freeman &62

Bland-Hawthorn 2002) and are very important to unveil the history of the Galaxy.63

Luckily, chemical abundances in industrial scale are now available, which is revolutionizing the field of Galactic64

archaeology, both due to direct discoveries from the data, but also because they are necessary to validate chemical65

evolution models. In particular, thanks to surveys such as GALAH (Buder et al. 2020), APOGEE (Majewski et al.66

2017; Abolfathi et al. 2018; Holtzman et al. 2018) and Gaia (Gaia Collaboration et al. 2016a,b, 2018; Brown et al.67

2021; Eyer et al. 2022; Recio-Blanco et al. 2023), chemical abundances up to millions of stars are now available to68

better explore the processes that shaped the Galaxy.69

As an example of the power of chemical abundances to unveil the past of the Milky Way it is possible to remark70

the on-going extensive search for the building blocks of the Milky Way. Nissen & Schuster (2010) found two different71

sequences in halo stars: one sequence containing stars enhanced in α elements (attributed to an ancient disc or bulge,72

which had its orbit heated due to a past merger event) and another sequence α-poor (an accreted dwarf galaxy).73

Hawkins et al. (2015) found a population of α-poor stars with abundances of Al, C+N and Ni which is different from74

α-rich stars, indicating that the population had a different chemical enrichment history from the bulk of the Milky75

Way. Later works found evidences of a major merger event using, among other information, chemical abundances.76

This major merger event is believed to have occurred between the Milky Way and a galaxy whose remnant stellar77

population is now known as the Gaia Enceladus Sausage (GES) (Helmi et al. 2018; Belokurov et al. 2018). Carrillo78

et al. (2022) studied the chemical abundances of 62 stars accreted from GES, considering a wide wavelength range79

from the optical to the infrared. They report that accreted stars have enhanced neutron capture abundances when80

compared with Milky Way stars, in particular of Eu, indicating differences in the chemical evolution of GES when81

compared with the Milky Way (see also Matsuno et al. 2020; Aguado et al. 2021; De Brito Silva et al. 2022, de Brito82

Silva in.prep.). Buder et al. (2022) used GALAH chemical abundances to study accreted stars and concluded that83

they are chemically different from stars born in situ in terms of Cu, Mg, Si, Na, Al, Mn, Fe and Ni. Horta et al. (2022)84

used data of Gaia and APOGEE to characterize 12 halo substructures, candidates to have accreted origins. We note85

that these are only a few examples, but other numerous works have done remarkable contribution to this topic.86

It is undeniable how important chemical abundances are in order to understand the evolution of the Milky Way.87

However, several open questions still remain, such as the unknown number building blocks (i.e. accreted galaxies) that88

constitute the Milky Way. The building blocks are also not fully characterized. Their detailed chemical abundances89

distributions, masses, star formation histories and age-metallicity relations are still not defined. Some of the accreted90

stellar populations attributed to different progenitor galaxies could actually be from the same galaxy, considering the91

caveats associated with their selection (see Horta et al. 2022; Buder et al. 2022). Currently, multiple works are starting92

to approach these questions using numerical simulations (e.g. Bignone et al. 2019; Monachesi et al. 2019; Amarante93
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et al. 2022; Carrillo et al. 2023). In this paper we resort to a novel approach to contribute to answering open questions94

in Galactic Archaeology by applying phylogenetic concepts to galaxy formation.95

Phylogeny applied to chemistry of low-mass stars can be referred to as stellar phylogeny. It was proposed in Jofré96

et al. (2017), where the authors used 17 chemical elements to perform a phylogenetic study of 22 solar neighbourhood97

stars. They found three groups that had different chemical enrichment rates measured from the relation between the98

age and other phylogenetic properties. A second stellar phylogenetic study of the Milky Way was performed in Jackson99

et al. (2021), where they used 78 solar neighbourhood stars and 30 chemical elements to explore the Milky Way disc.100

The goal of that study was to test if more stars and elements would help to understand how the three groups found101

in Jofré et al. (2017) were related to each other. With the aid of new Gaia data (Gaia Collaboration et al. 2016a,b,102

2018; Brown et al. 2021; Eyer et al. 2022), they proposed that one of the three groups was an ancestral population103

of the groups associated to the thin disc, having a significantly higher star formation rate due to perhaps a starburst104

during the first epochs of the thin disc formation.105

While studies have explored stellar phylogenies in observed data, using simulated data has become key to help the106

interpretation of trees. The advantage of working with numerical simulations for these purposes is that they provide107

the full evolution of baryons as the gas is transformed into stars and chemical elements are produced and injected108

into the interstellar medium where the stars evolve. Since the chemical evolution is known and the simulated stellar109

populations can be traced back in time, phylogenetic trees built from the simulated stellar populations can be directly110

compared to the true evolution, to learn which particular features of the trees can be related to events in the formation111

and evolution of galaxies. In this paper we propose to use simulated galaxies to advance in the development of stellar112

phylogeny.113

In addition, simulations allow the assessment of the maximum chemical abundance uncertainties for which phy-114

logenetic signal is sufficiently preserved to provide phylogenetic trees that portray reliable evolutionary histories.115

Furthermore, with simulated data it is possible to assess for selection effects, since we have information about the116

entire galaxy.117

Stellar phylogeny is still a very new approach and multiple questions about its applicability and interpretation118

remain open. Some of these questions can be best addressed by using simulations of galaxies. In this work, we use119

for the first time phylogenetics applied to a simulated disc galaxy in order to answer three specific questions: First,120

how many stellar particles are required to build phylogenetic trees that robustly portray the evolutionary history of121

this simulated galaxy? Second, how do the uncertainties in the chemical abundance data impact the robustness of the122

evolutionary history represented by phylogenetic trees? And third, can phylogenetic trees from different regions of a123

simulated galaxy, which have different histories of formation, illustrate the different evolutionary histories?124

In Section 2 we describe how the phylogenetic trees are built and how we compare them. In Section 3 we describe125

the simulation used in this work as well as the selection of stellar particles used to approach the different specific126

questions proposed. In Section 4, we present the results and interpretation of our findings. Finally, in Section 6 we127

present our summary and conclusions.128

2. PHYLOGENETIC TREE CONSTRUCTION AND ANALYSIS129

In this section we describe how the phylogenetic trees are built and compared. An exhaustive analysis of the130

suitability of phylogenetic trees for the reconstruction of the ISM history is given by Eldridge et al (in prep).131

2.1. Tree concepts132

To interpret the phylogenetic trees presented in this paper, we focus on key concepts from the trees which involve the133

branching pattern, the root, and the branch lengths. Extensive explanations of these concepts and their applicability134

can be found in the seminal books on trees and phylogenetics such as Felsenstein (2004); Hall (2004); Lemey et al.135

(2004); Baum et al. (2005) and Yang (2014).136

The branching pattern is related to the structure or topology of the tree. In biology the tips represent present-day137

species, while the internal nodes represent the last common ancestor of all the tips which descend from it. In our case,138

tips represent the stellar particles, which are stellar populations with a given age and chemical abundances. Most of139

these stellar particles are fossil records of an ISM which is now extinct.140

The ancestral form of all objects considered in a tree is the root. We note that building a tree with the algorithm141

we used does not provide a rooted tree, even if many tree reconstruction methods might display trees in rooted form.142

To root a phylogenetic tree is a delicate procedure, because depending on the root chosen, the ancestor-descendant143
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temporal relationship of the tree changes and so the reconstruction of the history. There are few ways to find the144

root, but most of them rely on an evolutionary model developed for biology. As a consequence we need to consider145

an alternative approach. Since we are working with a simulated galaxy, and therefore we know the origin of each146

stellar particle, we can consider the most ancient ones which exist as soon as the ISM started evolving due to chemical147

enrichment for rooting. Therefore, we set the outgroup as the most ancient stellar particle in the simulation which is148

related to the ingroup (all other sampled particles) and place the root in the branch that connects that ancient stellar149

particle with the rest of the tree.150

The length of a branch represents the amount of chemical change or chemical divergence between nodes. A tree151

showing only the topology without the branch length information can be referred to as a cladogram, while a tree which152

specifies the branch lengths can be referred to as phylogram. This is important here, because that differs from the153

usage of dendograms or some other mathematical tree graphs widely used in astronomy to perform data analysis such154

as clustering or classifications (HDBSCAN by Campello et al. (2013), t-SNE by Van der Maaten & Hinton (2008),155

random forest by Ho (1995), for example). We can associate a relation of branch length and the age between two tips156

or between the root and the tips as a measure to the chemical enrichment rate (see also Jofré et al. 2017).157

2.2. Building phylogenetic trees158

We use the same methodology thoroughly described in Jackson et al. (2021), which was adapted from Jofré et al.159

(2017). Briefly, it consists of three steps: (i) selection of evolutionary traits; (ii) building the phylogenetic tree; (iii)160

evaluating its robustness.161

Encoding evolutionary traits is fundamental, since this has a direct impact on the tree topology and its interpretation.162

In modern biology, most trees are inferred from sequences of DNA, with each site in the sequence acting as an163

independent and discrete observation (Drummond & Rambaut 2007; Maddison & Maddison 2009; Hall 2013). In our164

case, chemical abundances of stars are continuous. Fortunately, there are methods that uses distances matrices and it165

is possible to calculated distances from continuous data.166

Distance matrices are used to quantify the differences of traits between observations. In the case of our study, our167

traits are the chemical abundances of each single stellar population as mentioned above (see also Section 3.1) which168

in the simulations is represented by a stellar particle. The distance matrix is formed by the difference in chemical169

abundance (or chemical distance) of all the stellar particles we used to build a tree in relation to all the other particles.170

In order to calculate the pairwise distance of the stellar particles, we used the Euclidean distance. The total chemical171

distance between the stellar particles i and j was calculated as Di,j =
∑N

k=1

√
([Xk/H]i)2 − ([Xk/H]j)2. For more172

details about chemical distances and distance matrices we refer to Jofré et al. (2017).173

From the distance matrices, the phylogenetic trees are built with the Neighbor-Joining (NJ, Saitou & Nei 1987;174

Gascuel & Steel 2006) algorithm, which assesses the distances to find the most probable evolutionary sequence. This175

algorithm, unlike others available in the literature, does not compel equal distance between the root of the tree and176

any of the tips. This is an important consideration, because it is known that chemical evolution differs from place to177

place and from chemical element to chemical element (e.g. Matteucci 2012; Maiolino & Mannucci 2019; Johnson et al.178

2022). Apart from this assumption that agrees with our knowledge of chemical evolution of galaxies, NJ methods can179

be used to infer phylogenies from distance matrices (Atteson 1997; Kuhner & Felsenstein 1994; Lemey et al. 2004;180

Mihaescu et al. 2009; Jofré et al. 2017; Jackson et al. 2021). The NJ method has the advantage to be very fast and181

simple to implement, which satisfies our needs, since we aim to empirically test phylogenetic approaches in a dataset182

which is not one governed by the biological law of evolution. For more fundamental discussion about the usage of NJ183

trees in galaxy evolution, we refer to Eldridge et al (in prep).184

2.3. Comparing phylogenetic trees185

2.3.1. Robinson-Foulds Distance186

One common method to compare trees is the widely-used measure of topological distance between two trees is defined187

by Robinson & Foulds (1981), which is referred to as Robinson-Foulds distance (hereafter RFD).188

The RFD evaluates how similar two trees are by matching the similarity between a partition or split in one tree and189

its pair on the second tree. The partition distance is defined as the total number of splits that exist in one tree but190

not on the other. It can be equivalently defined as the number of contractions and expansions needed to transform191

one tree into the other. Removing an internal branch by reducing its length to zero is a contraction, while creating192

an internal branch is an expansion. For a rooted tree with n tips and (n − 2) internal nodes, the partition distance193
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ranges between 0 and Dmax = 2(n − 2) (see Yang 2014, for extensive discussion). The RFD considers a performance194

parameter P = 1−D/Dmax to assess the similarity between trees. We note that the RFD varies between 0 to 1, where195

the smaller the value, more similar two phylogenetic trees are.196

There are a few limitations on using the RFD. First, as it only focuses at splits in the trees, it does not consider the197

branch length as a information for similarity. Second, some deep relationships in the tree might be neglected for trees198

in which splits of outer nodes are different despite sharing internal nodes. This implies that while the performance of199

RFD ranges between zero and one, two random trees normally differ by 80%.200

We comment that the RFD parameter can only be calculated for a tree built from the same set of objects. It serves201

thus to compare different input data, but not to compare different set of objects, since the identification of splits in202

different trees can not be matched. In order to calculate the RFD we used the R library treedist1 (Smith 2020a, 2022,203

2020b) and the module TreeDistance, which follows Smith (2020a) and uses the concepts of entropy and information204

described in MacKay & Mac Kay (2003).205

2.3.2. Consensus tree206

While tree distances are a measure of how different trees are, consensus trees summarise common features about a207

collection of trees. In the same way as the RFD, the consensus tree can be obtained when the set of objects used to208

build trees is the same.209

In this work we consider the majority-rule consensus tree, which shows the branches and splits that are present in210

the majority of the trees. Majority is defined as more than 50%. A consensus tree is a summary tree which essentially211

selects the nodes that appear in at least half of the trees, and rejects all other nodes. Rejected nodes are transformed212

in polytomies, e.g. there are more than 2 branches connecting a given node with a tip (Baum et al. 2005). There213

are two types of polytomies: hard and soft. Hard polytomies are associated with multifurcations in the tree, while214

soft polytomies are associated with unresolved relationships in the tree. Soft polytomies are an indication of lower215

phylogenetic resolution in the tree. Hence, polytomies can imply a particular extreme event which might give rise216

to several evolutionary paths but in a consensus tree they might illustrate lack of accuracy in the data to solve the217

branching pattern of the historical events. Therefore, while consensus trees are not ideal to study the evolutionary218

history of a galaxy, they are extremely useful to study the global properties of a set of phylogenetic trees, since they219

display their common features.220

It is worth noting that polytomies in a consensus tree are a way to illustrate uncertainties, and do not represent a221

particular evolutionary event that could cause a large divergence of lineages. It is therefore not encouraged to interpret222

evolutionary histories with consensus trees because the polytomies easily lead to wrong interpretations.223

3. SIMULATED DATA224

In this work we use data of a simulated disc galaxy. The information available from the simulation will be used to225

characterize the level of agreement between the evolutionary history traced by the phylogenetic trees and the history of226

the simulated galaxy. This way we will take numerous advantages of the information provided by using hydrodynamical227

simulations. First, chemical abundances and ages for a large number of stellar particles are available. This allows228

the consideration of selection biases that are common when working with observed data. Second, it provides the229

opportunity to examine in detail the place and time different stellar particles were formed, which allow the assessment230

of the reliability of the phylogenetic trees to assign connections. Finally, the simulation provides information about231

the galaxy studied, from its star formation rate (SFR) through time, to its age-metallicity relation (AMR) and the232

nucleosynthetic channels that produce different chemical elements. Therefore, by using simulated data we can build233

phylogenetic trees for which reverse-engineering of the evolutionary history traced is possible.234

3.1. Simulations235

For this paper, we use a pre-prepared simulation of an isolated disc galaxy. This simple initial condition allows us236

to perform the construction and analysis of the phylogenetic trees in a system which does not receive material (gas237

inflows or mergers) from the the surroundings. It is simple enough to be used as a first test-bed for phylogenetic trees.238

Therefore this simulated disc galaxy is not expected to represent a real galaxy. From this starting point, we will build239

up more complex galaxy formation scenarios until reaching maturity in the technique to adequately apply phylogenetic240

trees in a cosmological context in future works.241

1 see https://cran.r-project.org/web/packages/TreeDist/TreeDist.pdf for details.

https://cran.r-project.org/web/packages/TreeDist/TreeDist.pdf
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Figure 1. Face-on (upper panel) and edge-on (lower panel) spatial distribution of the stellar populations in the four defined
groups: Group 1 (green), Group2 (blue), Group 3 (pink) and Group 4 (red). The gray points represent the whole distribution
of stellar populations in the simulated galaxy. We note that volumes mapped by the selected groups represent a sphere of 1kpc
radius.

The analysed simulation was performed by using a version of P-GADGET-3 code (Springel 2005), which includes a242

multiphase model for the gas component, metal-dependent cooling, star formation and supernova feedback, as described243

in Scannapieco et al. (2005) and Scannapieco et al. (2006). A Chabrier Initial Mass Function is assumed with a lower244

and upper mass cut off of 0.1 and 40 M⊙ respectively, (Chabrier 2003).245

The chemical evolution model includes the enrichment by Type Ia (SNIa) and Type II (SNII) Supernovae (Mosconi246

et al. 2001; Scannapieco et al. 2006). The SNIa events are assumed to originate from CO white dwarf (hereafter247

CO WD) binary systems, in which the explosion is triggered when the primary star, due to mass transfer from its248

companion, exceeds the Chandrasekhar limit. For simplicity, the lifetime of the progenitor systems (delay times)249

are assumed to be randomly distributed over the range [0.7, 1.1] Gyr. This simple model for the lifetime distribution250

produces consistent results with the single-degenerated model (Jimenez et al. 2014). The nucleosynthesis yields of SNIa251

corresponds to Iwamoto et al. (1999). SNII originate from massive stars with lifetimes estimated according to Raiteri252

et al. (1996). Their nucleosynthesis products are derived from the metal-dependent yields of Woosley & Weaver (1995).253

The chemical model traces the following 12 different chemical elements: H (hydrogen), 4He (helium), 12C (carbon),254

14N (nitrogen), 16O (oxygen), 20Ne (neon), 24Mg (magnesium), 28Si (silicon), 32S (sulfur), 40Ca (calcium),56Fe (iron)255

and 62Zn (zinc). Initially, the gas component is assumed to have primordial abundances i.e. XH = 0.76, YHe = 0.24256

and Z = 0.257

The initial conditions correspond to a disc galaxy composed of a dark matter (DM) halo, a stellar bulge component258

and an exponential disc, with a total baryonic mass of mb ∼ 5.2 × 1010M⊙. The halo and bulge components were259

modelled by an NFW profile (Navarro 1996) and a Hernquist profile (Hernquist 1990), respectively. The gas component260
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is distributed in the disc and accounts for 50% of the total disc mass. The initial gas mass particle is mgas =261

1.96× 105M⊙. The gravitational softening (i.e. a numerical length introduced to avoid unrealistic gravitational forces262

during particles close encounters) adopted is 200 pc for the gas and star particles and 320 pc for the dark matter263

component.264

Each stellar particle represents a single stellar population with the same age and chemical abundances. Hereafter265

we will use the standard definition [X/H] = (log10X∗/H∗)− (log10X⊙/H⊙), where X and H are the abundance of the266

element X and H, respectively. Hence, for each stellar particles, abundances can be defined by combining the chemical267

elements described above.268

3.2. Data269

The simulated galaxy has a strong initial starburst, that while widely spread, is more intense in its central region.270

After the initial starburst, the star formation activity decreases. We chose to follow the evolution of the system until this271

time as this allows SNIa to take place in the simulation. Since the simulation starts with primordial gas, the first stellar272

particles that formed will have Z = 0, where Z is the so-called metallicity which quantifies the abundances of elements273

heavier than He. However, this simulation does not include a model for the formation of such stellar particles, which274

are known to be different from second generation ones. Considering this and the fact that chemical abundances are the275

input parameters to build phylogenetic trees, we excluded the stellar particles that have been formed from primordial276

gas. The stellar particles selected for the analysis have ages ≤ 1.5 Gyr and −3.0 ≤ [Fe/H] ≤ 0.5 approximately. We277

used these particles to create different sub-samples that were used to explore the different specific questions concerning278

this analysis.279

3.2.1. Stellar samples280

For our study, we perform different selections of the stellar particles from different regions of the simulated disc281

galaxy as described above. We refer to them as deterministic, noise, Group 01, Group 02, Group 03 and Group 04.282

They are summarised in Table 1 and explained below.283

The deterministic sample is our primary sample and was created to explore the phylogenetic signal based on the284

number of stellar particles used to build the phylogenetic trees (see Section 4.2) and also the impact that uncertainties285

on the chemical abundances have in this kind of study (see Section 4.3). We wanted this sample to have a history286

in which older populations directly contributed to the chemistry of the younger populations. In order to select these287

particles, we defined a sphere of 1 kpc of radius around the galaxy’s centre of mass at the snapshot that corresponds288

to 1.5 Gyr. The radius of the sphere is larger than three gravitational softening lengths but small enough to maximize289

the possibility that the stellar particles represent populations that have a common chemical history of evolution. Then290

we chose only the stellar particles whose progenitor gas particle was also in the same region since the beginning of291

the simulation. We adopt a time of 0.016 Gyr which corresponds to the first snapshot available of the simulation.292

Finally, we chose only the stellar particles whose birth radii were also inside the sphere. The central location of the293

deterministic sample also considers that the particles have low probabilities to experience significant migration, since294

they are located at the centre of the gravitational potential well.295

The noise sample was built by replacing the chemical abundances of the deterministic sample by random chemical296

abundances. The random chemical abundances were generated within the range of the deterministic sample. Therefore297

the noise sample has stellar particles whose chemical abundances have no astrophysical meaning. This sample was298

included in this study in order to compare how phylogenetic trees from data compare to trees from random chemical299

abundances and evaluate the presence of phylogenetic signal.300

Finally, groups 01, 02, 03 and 04 are used to explore the evolutionary histories of different regions of the galaxy301

(see Section 4.4). We selected stellar particles in four different spheres at different galactic radii. All the spheres have302

1 kpc of radius like the deterministic sample. Unlike the deterministic sample, however, here we perform no further303

selections on the birth radii or the location of their progenitor gas particles, hence allowing the particles to come from304

outside the corresponding sphere. Group 01 was built from a sphere centred at (x, y, z) = (0, 0, 0). Group 02 was built305

around the position (x, y, z) = (3, 3, 0) kpc. Group 03 is from a sphere centered at (x, y, z) = (−3, 3, 0) kpc. Group 04306

was selected around the position (x, y, z) = (−5, 5, 0) kpc. Groups 02 and 03 were selected to assess possible azimuthal307

variations, in which only Group 03 select stellar particles from a spiral arm.308

Figure 1 shows the spatial distribution of the four regions studied. Group 01 (green) contains 2516 stellar particles.309

Group 02 (blue) contains 563 stellar particles. Group 03 (pink) has 506 stellar particles. Finally, Group 04 has 100310

stellar particles. The colors associated with each group is respected in the rest of this work. In grey we show the311
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Table 1. Description of the different samples of stellar particles used in this work. We note that the total number of stellar
particles (sample size) refers to the global number of the entire sample and not the number of stellar particles used to build the
phylogenetic trees. All of the spheres used to select Groups 01, 02, 03 and 04 and the deterministic sample have a radius of 1
kpc.

Sample name Description Sample size Used in

Deterministic

Sphere of 1 kpc of radius centered

at the position (0,0,0). We only

consider stellar particles which

progenitor gas particles were

inside the sphere in the beginning

of the simulation and have

remained within the same

region since they were born.

761

Section 4.2 Phylogenetic signal

in numerical simulations

Section 4.3 Phylogenetic signal

considering uncertainties

Noise

Built using chemical abundances

randomly created, without any

astrophysical meaning. The

synthetic chemical abundances

created respect the range of the

distribution as observed in the

simulation.

10, 50, 100 and 200
4.2 Phylogenetic signal in

numerical simulations

Group 01

Sphere with center at (0,0,0), without

the other constraints considered in the

deterministic sample (birth place,

location of progenitor gas particle)

2365

Section 4.4 Evolutionary history

considering different regions of

the galaxy

Group 02 Sphere with center at (3,3,0) 324

Section 4.4 Evolutionary history

considering different regions of

the galaxy

Group 03 Sphere with center at (-3,3,0) 478

Section 4.4 Evolutionary history

considering different regions of

the galaxy

Group 04 Sphere with center at (-5,5,0) 159

Section 4.4 Evolutionary history

considering different regions of

the galaxy

spatial distribution of all stellar particles at 1.5 Gyr. The difference in number of particles in these regions is due312

to the different gas densities in the simulation, which follows an exponential profile. This has an impact on the star313

formation history, and therefore the chemical enrichment.314

The deterministic and noise samples are used to assess the dependence of the phylogenetic signal on the number315

of stellar particles selected to built the trees. Hence we created subsamples containing 10, 50, 100 and 200 stellar316

particles. Groups 01 to 04 are used to study the physical information that can be retrieved by the phylogenetic trees.317

For these groups, we selected 100 stellar particles to represent the stellar population of the corresponding region, based318

on the results of the analysis of the deterministic and noise samples. We applied a Kolmogorov–Smirnov test (hereafter319

KS test) to guarantee that every sub-sample of 100 stellar particles provided a fair representation of the properties of320

their parent sample. We rejected the null hypothesis if the p-value was lower than 0.05. The KS test considered the321

distributions of [Fe/H], [O/Fe] and star formation time.322

3.2.2. Input information for trees323

We used chemical abundances of ten chemical elements in order to build the phylogenetic trees. The chemical324

elements are: O, Mg, Ca, Si, Ne, S, Fe, Zn, C, and N. They trace different nucleosynthetic channels and provide325

important information about chemical evolution processes in the simulation. O, Mg, Ca, Si and Ne, for example, are326
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Figure 2. Cumulative stellar mass fraction as a function of age of all samples considered in this work (see Table 1). The orange,
green, blue, pink and red lines refers to deterministic, Groups 1, 2, 3 and 4 samples. The horizontal lines indicates where 50
and 80 percentiles of the stellar mass contribution.

α elements, produced mainly by SNII, while Fe and Zn are iron-peak elements produced mainly by SNIa. In the case327

of C and N in this simulation, the production is done only by SNIa and SNII as AGB winds are not included in our328

simulation.329

The chemical abundances were defined in relation to hydrogen and the Sun, in the format [X/H] as defined in330

Section 3.1. We chose this format in order to have a more direct parallel between the abundances in this work and331

the observational works on chemical evolution of the Milky Way. Another reason for this choice is to have Fe as an332

independent element to build phylogenetic trees. We note that a galaxy that might experience inflow of pristine gas333

can have a trend of [X/H] which is not monotonic. In the case of this simulated galaxy, there is no inflow of pristine334

gas, therefore the ratio [X/H] can be used without that concern.335

The chemical abundances provided by the simulation do not have intrinsic uncertainties, therefore each tree we build336

is the result of one distance matrix which is the result of the simulated abundances. When studying the impact of337

uncertainties in the evolutionary history provided by the phylogenetic trees, we varied the original abundance value338

considering a normal distribution. In order to do so, we created a normal distributions where their mean was the339

original abundance value and the uncertainties (σ) were 0.01, 0.05, 0.08, 0.1, 0.2 and 0.3 dex. The widths of the340

normal distribution were chosen in order to investigate uncertainties found in standard observational studies (e.g. 0.1,341

0.2 and 0.3 dex) and also in high-precision studies (e.g. 0.01 and 0.05 dex), while considering intermediate cases to342

better delimitate the maximum uncertainties possible for which phylogenetic signal is mostly preserved (e.g. 0.08 dex).343

4. RESULTS AND INTERPRETATION344

In this Section we present the results we obtained in three tests, performed using the different samples discussed in345

Section 3.2.1. The astrophysical properties of the samples used here are discussed in Section 4.1. In our first test we346

explore the phylogenetic signal provided by trees when we vary the number of stellar particles (Section 4.2). Then,347

we investigate the impact of chemical abundances uncertainties on the evolutionary history traced by the trees and348

in the phylogenetic signal (Section 4.3). Finally we explore the evolutionary history found in different regions of the349

simulated galaxy and its connection with the AMR and SFH of the location (Section 4.4).350

4.1. Astrophysical properties of the different samples used351

In order to explore the astrophysical properties of the different samples used in this work, their star formation352

histories (SFH), age-metallicity relation (AMR) and [O/Fe] vs. [Fe/H] distribution are considered. Oxygen is a353

chemical element mostly deposited in the ISM due to SNII which are the explosions of massive stars, while the354

production of Fe by SNIa and SNII varies according to the yields adopted. Hence, the deviation of [O/Fe] from what355

is that typically found in SNII ejecta represents the contribution from low-mass stars. As a consequence, the ratio356

[O/Fe] is a powerful diagnosis of the low and high mass stars contribution to the chemical evolution of the ISM, which357

happen over different timescales because of stellar evolution. The AMR relation is also key, since it shows how the358

metallicity of the environment changes with time. Finally from the SFH we can identify when star formation, hence359

chemical enrichment, has been most prominent in the simulation, or how star formation might vary in the different360

samples studied. We therefore use [O/Fe] vs. [Fe/H] distribution, the AMR and the SFH to guide the interpretation361

of the evolutionary history traced by the phylogenetic trees.362
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Figure 3. Example of astrophysical properties of the samples studied. Each line represents respectively the samples: deter-
ministic, Group 01, Group 02, Group 03 and Group 04. Left: Star Formation History (SFH). Center: Age metallicity relation
(AMR). Right: [O/Fe] vs [Fe/H] relation. Gray: all stellar particles with chemical abundances available in the simulation at 1.5
Gyr. Dark colors represent all possible stellar particles from each sample. Star symbols represent the chosen 100 particles used
to build phylogenetic trees in this work.
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Figure 2 shows the cumulative stellar mass fraction as a function of the stellar ages of the populations within each363

analysed sample. In yellow the deterministic sample, and Groups 01, 02, 03, and 04 in green, blue, pink and red,364

respectively. Dashed horizontal lines represent the 50 and 80 percentiles of the stellar mass contribution. This figure365

allows us to compare the star formation histories of the different samples. We note that Group 04 forms 80% of its366

stellar mass in a considerably shorter time scale than Group 01, reflecting that the outskirts of the galaxy formed the367

majority of its stellar mass faster than the center of the galaxy at the given time. We also observe that Group 03 also368

creates 80% of its stellar mass faster than Group 02.369

In Figure 3 we show the SFH, the AMR and the [O/Fe] vs. [Fe/H] diagrams for the different samples studied here.370

Each row of the figure is a different sample. The gray background points correspond to all the 31 807 stellar particles371

at 1.5 Gyr that passed our first selection criterion (i.e. have Z higher than 0) and is therefore the same in all rows.372

In color we show all stellar particles selected for each sample. The stellar symbols enclosed correspond to a random373

selection of 100 particles which are referred to as example samples. We make this selection because we can only build374

trees with limited number of stellar particles to avoid visual cluttering, therefore we need to assess if these selections375

are a good representation of the entire sample. These are the 100 particles selected considering a K-S test and displayed376

in the trees of the following sections, and we can see that in every sample, they are well distributed with respect to377

the main sample.378

Looking at the left columns of Fig. 3, we see that the peak of the star formation happened at the start of the galaxy’s379

evolution. This peak is seen across the different samples, although it lasts for longer at the central part of the galaxy.380

One can see that both the SFH from the deterministic and the Group 01 samples have a SFH that peaks at 1.4 Gyr381

and decreases gradually over approximately 0.3 Gyr, while the Groups 02, 03 and 04 have peaks that lasts only for382

about 0.1 Gyr. There is still star formation happening during the rest of the history of this galaxy across all regions,383

but at a much lower rate.384

It is expected that a galaxy that evolved in isolation would not present further enhancement of the star formation385

after the first peak, which is driven by formation of the arms in this simulation. The new born stellar populations tend386

to be concentrated in the central regions following the initial gas density distribution, but they will also populate the387

denser regions of arms. After this, the star formation self-regulates consuming the remaining gas (recall that there are388

no external gas inflows or mergers in this isolated case) into stars which, subsequently, injects supernova feedback into389

the ISM. The energy increases the temperature and pressure and contributes to regulate the star formation activity,390

producing a more continuous star formation activity with same weak star formation bursts.391

The AMR relations in the middle panels show the relation between chemical enrichment and the SFH. Since a lot392

of stellar particles are formed at the beginning of the galaxy’s history, it is expected that chemical enrichment will393

happen quickly, particularly at the central regions where the gas density is highest. The AMR is therefore expected394

to be steep for stellar particles formed at the epoch of the star formation peak. We observe that happening in all395

regions. Once the star formation has slowed down, the metallicity slightly increases. We can note some differences396

among regions. The AMR relation at the central regions increases more monotonically, which is an effect of a more397

significant star formation happening over a longer period of time with respect to the outer regions. This can also be398

seen from the cumulative mass ratio of Fig. 2 where the central region forms 50% or 80% of its stellar particles later399

than the outer regions. The level of metal enrichment reached by each stellar populations is also different, being the400

central regions systematically more enriched, as expected.401

The AMR of the Groups 02, 03 and 04 show a breaking point around 1.3 Gyr, which is related to the abrupt change402

of star formation activity at that time. The AMR of the Group 04 has very few stellar particles with ages younger403

than about 1.2 Gyr. In fact, from Fig. 2, we see that 80% of the stellar mass in that region are formed 1.2 Gyr ago. It404

is thus more difficult to attribute these stellar particles as a population that is following one chemical evolution path405

through a ancestral-descendant relationship.406

In all the analysed samples, we observe a decrease of [O/Fe] with the increase of [Fe/H], as expected according to407

chemical evolution of galaxies. In the first stages of evolution of the simulation, multiple SNII occur producing O in408

great quantity. SNIa progenitors have longer lifetimes, therefore only at later stages, Fe is deposited in the ISM in a409

more substantial way, decreasing [O/Fe]. This is seen in every panel.410

It is worth commenting the differences between the deterministic and the Group 01 samples, since both concern the411

same region in the galaxy, namely the central one. We note that the deterministic sample is a subset of Group 01,412

since we impose that both the stellar and the gas particles residing at the end of the simulation must have stayed413

in the inner region. This results in removing most of the younger particles of Group 01, which shows how much gas414
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Figure 4. Left: example tree built from deterministic selected stellar particles. Stellar particles represents a single stellar
population. Right: example tree built from noise sample (see Tab. 1). In order to build both trees, we included an outsider
stellar particle that corresponds to the oldest stellar particle in the simulation for which chemical abundances are available.
Both the trees presented in the left and right panels were rooted in this stellar particle, for better comparison. The scale at the
bottom of each panel refers to the branch length (total chemical difference).

flow is on-going in the central region of the simulation. In Fig. 2 it is possible to see how the deterministic sample415

assembles its 80% of stellar particles around 1.2 Gyr while Group 01 does it about 0.3 Gyr later.416

Groups 02 and 03 are also worth commenting on, since they are selected to study possible asymmetric effects in the417

disc. It is customary to assume that because of the galactic rotation, discs are asymmetric, and therefore only the418

galactic radius is considered as a variable to study variations in galactic structure and evolution, but the presence of419

the spiral arms might cause some asymmetries. Here we see that SFH, AMR and [O/Fe] vs [Fe/H] have very similar420

distributions in Fig. 3. But we also note that the total number of stellar particles in both regions is different, which421

is related to the different densities across the arms. Group 03 is located on a spiral arm. This has an impact on the422

star formation rate, as seen from the cumulative mass fraction of Fig. 2 where Group 02 assembles 80% of its stellar423

particles about 0.4 Gyr later than Group 03.424

As a consequence of the star formation histories, [Fe/H] has a quick increase during the first half Gyr, but after425

1.2 Gyr it is approximately constant with a weak increase in some regions depending on the star formation history426

and local characteristics of the ISM. That delayed enrichment of SNIa relative to SNII causes [O/Fe] to decrease as427

metallicity increases across the entire galaxy as a result of the interplay between the chemical production of O and Fe428

caused by stars of different lifetime. We also show in Figure 3 that our selection of 100 particles from our samples is429

a fair representation of the particles in that sample. We build the trees to explore the impact of these different SFH430

and AMR in these regions in the following sections.431

4.2. Phylogenetic signal in numerical simulations432

In this section, we focus on the deterministic sample to study if there is phylogenetic signal in our simulation. To433

do so, we first compare our trees with the noise sample to ensure we are obtaining results that are different than a434

random distribution, and then interpret our tree in the context of historical reconstruction. We used as the root of435

the trees the oldest stellar particle for which chemical abundances were available, as discussed in Section 2.1.436

4.2.1. Trees from chemical abundances obtained from simulated data or from a random distribution437

In this section, we investigate the dependence of the phylogenetic signal on the population density, specifically the438

number of stellar particles used to construct it within a given volume. This analysis is highly relevant as it allows us439

to determine the minimum number of stellar particles necessary to extract a signal that surpasses numerical noise in440

the simulation as well as natural stochasticity.441

Figure 4 shows an example of a tree built using the deterministic sample and one tree built using the noise sample.442

Both trees were built by using sub-samples of 100 stellar particles selected at random from the corresponding volume443
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Figure 5. Robinson-Foulds distance (RFD) distributions for the trees built with stellar particles selected from the deterministic
sample compared to noise (yellow histograms) and noise only (grey histograms) samples. Top left, top right, bottom left and
bottom right represent respectively the cases considering 10, 50, 100 and 200 stellar particles. Each panel contains the mean
(µ) RFD of the distributions. The largest the RFD, more different the trees are from each other.

(see Table 1 for a detailed definition of these sub-samples). In this figure, we can see that the two trees are very444

different from each other in their general aspect.445

The most notable difference between the trees is the branching pattern, in particular, the number of main branches.446

The tree from the deterministic sample shows one main branch, e.g. the tree is very asymmetric or imbalanced.447

Moreover, the branch lengths that connect tips to nodes are very short. We recall that nodes in biology reflect the448

last common ancestor of the descendant lineages. Here, since almost all the nodes have at least one descendant linage449

that connects directly to a tip, one might attribute that we are sampling the ancestral states and directly tracing the450

ancestral-descendant relationship of the stellar particles.451

The noise tree, on the contrary, has long branches, especially at the tips. All nodes are therefore a representation452

of a state that is very different to the tips and not directly sampled in the data. Moreover, the internal branches453

are shorter than the external ones, which is a reflection that the differences in this sample are driven by randomness454

and not by an internal hierarchical structures since this branching pattern shows that much of the chemical distance455

between the stellar particles is not explained by the inferred phylogenetic relationship and it is then deposited in the456

tips. The tree shows an even distribution of branches which bifurcate from nodes from the root to the tips (e.g. it is457

a symmetric or balanced tree).458

As discussed in Jackson et al. (2021), imbalanced trees happen when there is gradual evolution of a single lineage459

through time. Differences between traits can therefore be traced as information passed through generations but they460

still might represent the evolution of the same population. Balanced trees might reflect rather the differentiation of461

populations and processes which cause populations to evolve independently from each other. In astronomy so far462

stars or stellar particles whose chemical abundances are the result of a shared chemical evolution history produce very463

imbalanced trees. That was found in Jackson et al. (2021), in Walsen et al. (submitted) and Yaxley et al. (in prep)464

(both with solar twin observed data), in Eldridge et al. (in prep), and throughout this article.465

Based on these findings, we can report that the trees constructed from the simulated chemical abundances successfully466

capture a discernible phylogenetic signal that deviates from noise. We will now investigate the minimum number of467

members required in the sample to attain this objective and hence, justify the use of 100 members as adopted above.468

Figure 5 shows the RFD (see Sect. 2.3) between the deterministic and noise sample. Here we attempt to quantify the469

difference between a tree built from the deterministic sample and the noise sample (e.g. comparing the trees displayed470

in Fig. 4). We consider trees built using 10, 50, 100 and 200 stellar particles. We compare 1000 times this difference by471

randomly selecting particles from the deterministic sample and the noise sample. The yellow distribution represents472

these 1000 RFD estimates. This figure also shows the RFD obtained between two noise samples. In the same fashion473

as with the deterministic sample, we select randomly particles 1000 times from the noise sample and compare them.474

The RFD distribution in this case is represented with the grey color. We recall that the higher the RFD, the more475
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Figure 6. Example of phylogenetic tree of deterministic sample (same as presented in Figure 4) color-coded according to age.

different the trees are from each other. Therefore, when the mean RFD of the yellow distribution is larger than the476

mean RFD of the gray distribution, we consider we have phylogenetic signal. Also, to have trees that are generally477

different from noise, it is preferable that both distributions do not overlap.478

In the case of building trees with 10 stellar particles, the distribution of RFD of deterministic and noise samples479

overlap. The mean RFD for the deterministic sample is 0.77, while for the noise sample alone, the mean is 0.75. The480

standard deviations (SDs) are respectively 0.08 and 0.09. Hence, we interpret that trees built from noise containing481

10 stellar particles are not more similar to each other than they are to trees built from simulated data. When using482

50 stellar particles to build trees, the distributions of RFD become more different, but the tails in the distributions483

still overlap. The mean RFD for the comparison between deterministic sample is 0.90, while the mean for the noise484

sample alone is 0.85. The SDs are 0.01 and 0.02, respectively. With 50 stellar particles, we interpret that phylogenetic485

trees built from noise are more similar among each other than they are compared to a tree built using abundances486

from simulated data.487

In the cases of 100 and 200 stellar particles, distributions of RFD do not overlap but the mean of the deterministic488

distributions increases. In both cases the RFD are on average larger in the comparison of trees made from the489

deterministic and noise samples, than among trees from only the noise sample. This indicates that phylogenetic trees490

built from noise are more similar to each other than they are to phylogenetic trees from simulated data containing 100491

and 200 stellar particles. In the case of 100 stellar particles, the mean of the RFD between random and deterministic492

is 0.93 and in the case of 200 particles that mean is 0.94. The SDs are respectively 0.01 and 0.01. The mean RFD of493

noise against noise particles are 0.87 (with a SD of 0.01) and 0.88 (with a SD of 0.01) for 100 and 200 stellar particles494

respectively.495

We conclude that the more particles we consider, the more our trees are different from a random distribution, but496

using 50 particles or less might still produce some phylogenetic trees whose topologies are comparable with a random497

tree. When using 100 particles however, we obtain trees that are always different from noise, therefore we use 100498

particles from now on to interpret the phylogenetic signal of our data and reconstruct the history of our simulated499

galaxy. We note that this result might differ when considering more complex cases or a different resolution for the500

simulation and it is possible that more stellar particles might be required in those scenarios to reliably represent the501

evolutionary history of the system.502

4.2.2. Phylogenetic signal from the deterministic sample503
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We consider the difference between the tree built from abundances resulting of a simulation and the tree built from504

noise as a proxy for phylogenetic signal. We now investigate if our tree can help us to reconstruct the history of the505

deterministic sample. Figure 6 shows the example of deterministic tree color-coded according to age. This is the same506

tree as the one showed in Fig. 4. We can see that this tree has its internal nodes rank-ordered according to the ages.507

Moreover, the oldest particles are closer to the root, but that is expected if we have used the most ancient particle to508

root the tree. Given the AMR of this sample (see top middle panel of Fig. 3), it does not come as a surprise that the509

tree will have clear directional evolution, since our tree uses [Fe/H] as one of the traits in the distance matrix. The510

AMR is flat below ages of approximately 1.2 Gyr and this lack of sensitivity leads to a worst age-ranking at the top511

of the phylogenetic trees relative to the base of the trees. Figure 12 shows this tree but with particles are coloured by512

their [O/Fe].513

There is a section in the tree where the neighbouring particles do not necessarily have very similar ages. This514

coincides with the sector on which [O/Fe] mixes. It is possible that this is related to the moment in which SNIa events515

start to occur, which changes the overall chemical enrichment rate. Considering that the distance matrix uses a mix516

of elements coming from SNII and SNIa, if the rates of their production varies during the history of the galaxy, it517

might cause that particles of different ages to be chemically more similar than coeval particles. This section in the518

tree corresponds to ages below 1.0 Gyr, which is when the star formation slows down, the AMR becomes flatter and519

the [O/Fe] reaches solar values.520

It is further interesting to note the branch lengths between nodes in this tree, becomes shorter along the path of the521

tree. This might be related to the star formation history. At earlier stages of the history, when star formation is at its522

peak, there is a notable change in chemical abundances, which is represented by the steep AMR (see Fig. 3). In the523

beginning the gas is very metal-poor, therefore any enrichment is significant compared to its surroundings. This causes524

long branches. As the star formation slows down, the difference in chemistry becomes smaller, the AMR flatter, and525

the branch lengths shorter. Therefore, the branching pattern illustrates that the rate of chemical enrichment declines.526

Because our tree is asymmetric (e.g. it presents only one main branch), and that has rank-ordered ages, it reflects527

the result of one single history. This is consistent with the fact that our simulated galaxy did not experience interaction528

with another chemical-enriched galaxy, causing mixing of pre-processed gases or inflow of pristine gas from filaments.529

4.3. Phylogenetic signal considering uncertainties530

In the previous section, we defined the minimum number of stellar particles necessary in order to have enough531

phylogenetic signal to have trees that represent the evolutionary history of our studied galaxy. In this section, we532

investigate the maximum uncertainties on the chemical abundances for which the phylogenetic trees are evolutionary533

informative. Using the example tree of the deterministic sample (Section 4.2), we explore the effect chemical abundances534

uncertainties have on the phylogenetic signal and how they affect the evolutionary history we can interpret from the535

tree.536

For the purpose of this analysis, we perturbed the chemical abundances of the 100 stellar particles from the deter-537

ministic sample considering six uncertainty values: 0.01, 0.05, 0.08, 0.1, 0.2 and 0.3 dex. Abundances with precision538

below 0.05 dex fall in the high-precision domain and are rather obtained when analysing very high resolution and high539

signal-to-noise spectra (e.g. Nissen & Gustafsson 2018) or using machine learning tools when large samples of reference540

stars are available for training a good model (Ness et al. 2015; Leung & Bovy 2019; Wheeler et al. 2020; Ambrosch541

et al. 2023, Walsen et al. sumitted). Standard spectral analyses have abundance precision that are rather of the order542

of 0.1 − 0.2 dex. A precision of 0.3 dex is understood as a large uncertainty, but is unfortunately still very common543

for studies, particularly for faint stars for which the signal-to-noise is not very high, as for example for halo stars.544

In order to account for these uncertainties, we created new values of chemical abundances for each stellar particle.545

The new values consider a normal distribution with the mean as the original value and the standard deviation as546

the corresponding uncertainty considered. Using the perturbed chemical abundances we built new trees for the547

deterministic sample, which we compare with the original tree. In Figure 7, we show the RFD between the original548

tree and the the trees built considering uncertainties of 0.01, 0.05, 0.08, 0.1, 0.2 and 0.3 dex with different colours.549

The RFD shows that the yellow distribution has a mean of 0.07 (and SD of 0.03), indicating that considering550

uncertainties within 0.01 dex do not significantly change the trees. As uncertainties increase, the RFD increase as551

well, which is expected. For an uncertainty of 0.3 dex, trees deviate from the original one reaching a mean RFD552

of 0.50 (and SD of 0.04). We note that this value is still lower than the mean RFD of 0.93 for the comparison of553

the deterministic and the noise sample when 100 particles are considered. This suggests that while the trees with554
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Figure 7. Robinson-Foulds distance (RFD) when comparing the deterministic tree and those with chemical abundances
uncertainties of 0.01, 0.05, 0.08, 0.1, 0.2 and 0.3 dex. The means of these distributions are shown in the legend. The larger the
uncertainty, the more different trees become from the original.

Figure 8. Comparison between the deterministic tree (left tree in all three examples) and a new tree built by perturbing the
abundances (right trees in all three examples) within a range of 0.01 (left), 0.1 (middle) and 0.3 (right) dex. Dashed lines
connect same particle in each tree.

uncertainties of 0.3 dex differ among each other, there is still some phylogenetic signal as they are still distinct from555

pure noise. Additionally, to have a better idea of how the trees change when abundances are modified, we show in Fig. 8556

the link between two example trees for 3 cases of abundances. The left-hand trees are always the deterministic tree557

with no uncertainties in the chemical abundances, and the right-hand trees correspond to one example tree obtained558

by perturbing the abundances, considering 0.01, 0.1 and 0.3 dex, respectively. The dashed lines in each case connect559

the same particle in each tree.560

From the lines showed in Fig. 8, we can see that when abundances have an uncertainty of 0.01 dex, 24 of the 100561

particles change their labelling order (locations in the tree). Their new location is relatively close from the original562

tree, as expected if the change in abundance is small. In the case of an uncertainty distribution of 0.1 dex, 60 out of 100563

stellar particles change their places. Finally in the case of 0.3 dex uncertainties, 90 stellar particles change place in the564

tree. The new positions are quite far from the original tree. It is interesting to note the gradual increase of the branch565

lengths when uncertainties increase. This is also seen in the noise tree (see Fig. 4) and in Walsen et al. (submitted),566

who compared trees built from observed stars whose abundance measurements have different uncertainties. This tree,567

however, is different to the noise tree, as expected from the different RFD value obtained here and in Sect. 4.2. The568

tree with 0.3 dex uncertainty is in fact still very imbalanced, unlike the noise tree.569

While Figure 8 shows the displacement of stellar particles when considering uncertainties, it is fundamental to570

evaluate if different chemical abundances would still carry evolutionary information to reconstruct the shared history571

of the selected stellar particles. It is thus necessary to study the support of a tree with uncertain abundances has in572

this context. To do so, we computed 1000 trees by perturbing the abundances and collected these trees in a majority573
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Figure 9. Consensus trees topologies color-coded according to ages. Top: trees built considering chemical abundances uncer-
tainties of the order of 0.01, 0.05 and 0.08 dex respectively. Bottom: trees built considering chemical abundance uncertainties
of the order of 0.1, 0.2 and 0.3 dex respectively. The polytomies in each trees are indicated as A, B, C, D, E, F, G and H.

rule consensus tree (see Sect. 2.3). Figure 9 shows the consensus trees when considering the uncertainties of 0.01, 0.05,574

0.08, 0.1, 0.2. 0.3 dex. We note that only the tree topology is shown, since the branch length of consensus trees can575

not be directly related to the branch length of an actual sampled tree, which is the result of a distance matrix.576

In this work, we aim to focus on the branching pattern of the nodes and the age ranking of the selected nodes, we577

do not focus on the branch lengths. By collapsing nodes into multifurcations when nodes are conflicting in a sample of578

phylogenetic trees, we are reducing the number of total nodes in a tree, which essentially means reducing the resolution579

in which the shared history can be extracted. It is not trivial to define a limit of the maximum number of nodes that580

can be reduced from a sampled tree to a consensus tree that means a significant loss of the phylogenetic signal, but581

it is clear that if we allow multifurcations in our trees, they should be somehow distributed along the tree such that582

groups of stellar particles can be distinguished in e.g. their mean ages. That means, a polytomy that contains more583

than 50% of the particles which span the entire age range is not evolutionary informative.584

Figure 9 shows consensus trees made with sampled trees that consider different abundance uncertainties. The top585

left panel (P1) considers an abundance uncertainty of 0.01 dex, and shows that overall most nodes are present in more586

than 50% of the sampled trees. That tree has very few multifurcations, with four branches rising from a node at587

most. Moreover, these polytomies are at a significant distance from the root. Overall the age-ranking of the branches588

remains, thus we conclude that uncertainties of 0.01 dex do not affect the phylogenetic signal of an evolutionary tree589

of these properties.590

When focusing on the middle top panel of Fig. 9 (P2), we see the consensus tree topology obtained from trees591

sampled considering an uncertainty of 0.05 dex. As expected, the number and size of the polytomies increase. In this592

case, we find two significant multifurcations, labelled as A and B. The particles in the polytomy B are mainly old593

stellar particles, while the stellar particles in the polytomy A are intermediate-age particles. The age-ranking in the594
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tree is kept, even if the relation of age and distance from the root is not as tight as in the deterministic tree (see Figure595

6). The polytomy B is closer to the root than the polytomy A.596

The top right panel (P3) shows the consensus tree with uncertainties of 0.08 dex. Close to the root, the tree is597

still resolved, but it becomes less resolved with further out from the root. We label three significant polytomies, C,598

D and E. As in the previous case, these polytomies contain stellar particles that overall have different ages, with the599

polytomy C containing young stellar particles, D containing intermediate-age stellar particles, and E containing old600

stellar particles. Polytomy E is at a comparable distance from the root than Polytomy B in the tree of Panel 2. We601

thus conclude that while the age-ranking of the nodes has a large scatter, the ranking is still present and therefore602

with uncertainties of 0.08 dex, we are still able to reconstruct a history from a phylogenetic tree.603

The situation with uncertainties above 0.1 dex is more critical. Consensus trees with uncertainties of 0.1, 0.2 and604

0.3 are shown in the lower panel of Fig. 9, in Panels 4, 5 and 6 (P4, P5 and P6). Here we are able to label only one605

significant polytomy per tree, that is, F, G and H, respectively. They contain stellar particles of all ages, and contain606

a significant fraction of the particles of the sample. In these consensus trees it is not possible to arrange the star607

particles according to their ages in the tree, and therefore it is not possible to reconstruct the evolutionary history608

of this galaxy. We further find that as the uncertainty increases the polytomy becomes deeper in the tree. For an609

uncertainty of 0.3 dex, the polytomy is a few nodes away from the root.610

The fact that only close to the root we are able to resolve the tree in these cases is due to the significant change611

in metallicity at old ages (see AMR in Figure 3), which is related to the peak in SFH. When the star formation is612

less extreme, and the AMR does not present a significant change arriving to a plateau, uncertainties above 0.1 dex in613

abundance measurements do not allow us to study the evolution of that system using phylogenetic trees.614

4.4. Evolutionary history considering different regions of the galaxy615

While in Section 4.2 we investigated the dependence of the phylogenetic signal on the population density and in616

Section 4.3 we explored the dependence of phylogenetic signal on the uncertainties in the chemical abundances, in this617

section we explore how the AMR and SFH of different regions of the galaxy impact the properties of phylogenetic618

trees.619

In Section 4.2, we discussed the evolutionary history traced by phylogenetic trees from the deterministic sample.620

In this section we repeat that analysis using phylogenetic trees from different regions of the galaxy. We thus analyze621

the trees built from the example samples of Groups 01, 02, 03 and 04, whose spatial distributions are shown in Fig.1622

and astrophysical properties in Fig. 3 with the colours green, blue, pink and red, respectively. The chosen 100 stellar623

particles are used to build and analyse the trees of this section.624

Figure 10 shows the trees of each group, with the stellar particles color-coded according to age in the top row, and625

according to [O/Fe] in the bottom row. Similarly to the tree built using the deterministic sample, these trees are626

imbalanced, and show rank-ordered ages, implying that everywhere in the galaxy we can reconstruct history. The627

branching order of the ages, however, becomes weaker from Group 01 to Group 04. This might be an effect of the628

SFH, whose peak becomes narrower towards the edge of the galaxy (see Fig. 3). This translates into a flatter AMR629

for stellar particles younger than about 1.2 Gyr.630

All trees show the presence of an apparent second branch of very old stellar particles, which are close to the root. The631

trees here have been rooted using the oldest star particle, but that does not imply that this particular stellar particle632

is a common ancestor to the rest of the stellar population. At the beginning of the simulation, there is significant633

homogeneity in the distribution of metals in the gas that reflects the local distribution of the cold gas from which634

stars are formed. This has an impact in how chemical evolution due to the first supernovae enriches the ISM. At the635

very first stages of evolution, the metallicity of the ISM is strongly heterogeneous. As star formation progresses the636

regions became more chemically enriched and mixed and the exchange of enriched material between regions could take637

place (e.g SN outflows, radial migration). However, as we moved from the central to the outer regions, the level of638

enrichment systematically decreases even though the AMR shapes are similar. This decrease in the global metallicity639

with radius is expected for galaxies with an exponential gas density distribution as the simulated galaxy used in this640

study.641

In order to better quantify the different trees and so discuss the rate of change in the chemical distance from the root642

to each tip, we calculate the distances of each tip to the root. Figure 11 shows the cumulative chemical distance from643

the root of stellar particles as a function of their ages in the left panel and the distribution of distances for each sample644

in the remaining panels. We can first observe that in all the four groups there is a sharp increase of the distance for645
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Figure 10. Phylogenetic trees of a selection of 100 stellar particles from the groups selected in the different regions shown in
Figure 1. Tips are color-coded according to ages (upper panels) and to [O/Fe] (lower panels).

Figure 11. Left: Cumulative distances from the root to the tip as a function of the ages of stellar particles. Groups 01, 02,
03 and 04 are represented as green, blue, pink and red lines, respectively. Right: Cumulative percentage of stellar particles
contained in bins of distance from the root. In the left panel it is shown that the distance from the root reaches a plateau or a
region with slow increase in the same region that contains the majority of stellar particles according to the right panel.

the oldest stellar particles, with few tips having short distances from the root. At around 1.2 Gyr, the distance reaches646

a more or less constant value, which ranges between 3.5 dex and 5.5 dex approximately depending on the group. The647

point when the sharp increase in the distance from the root stops is related to when the peak of star formation ends648

in each region according to their SFH (see Figure 3).649

Considering that Group 01 corresponds to the galactic center, that Group 04 corresponds to an outskirt of the galaxy,650

and that Group 02 and 03 are in the middle, it is encouraging to notice that the largest maximum distance is reached651
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by the tree built from stellar particles in Group 01 and that the shortest maximum distance is built from the Group652

04. From Fig. 3 we know that the SFH between Group 01 and Group 04 is different, in the sense that the central653

region experienced a long peak of star formation and continued forming stellar particles until present date, while the654

outer region experienced a short star formation peak, with an abrupt stop and almost no recent star formation. This655

translates into an AMR of a population that increases in metallicity until present day for the Group 01, while for656

Group 04 the AMR is rather flat.657

It is thus expected that a tree path which is drawn from a population with more star formation will be longer. From658

our results we find that indeed trees can be used to learn about the SFH of galaxies, since the difference in the total659

length-path of the tree (i.e. distance from the root) is large (2 dex), even if the AMR or the [O/Fe]-[Fe/H] planes660

are comparable.This shows that the tree enhances the differences. We note that another advantage of using tree path661

length to study the efficiency of star formation is that it is not necessary to know accurately the ages of the particles.662

This is an advantage because determining stellar ages is a challenging task.663

The right-hand panel of Fig. 11 shows how the distribution of distances from the root is different for the different664

groups. The group with higher and more extended SFH reaches higher lengths than the group with lower SFH. The665

latter has a wider distribution of lengths between 2 and 4 dex, reflecting also the scatter in the AMR. In the case of666

Groups 02 and 03, the SFH is very similar in both cases. There are more stellar particles formed in Group 03 than 02667

due to the higher gas density in Group 03, which is where the spiral arm lies. From the AMR or the [O/Fe] vs [Fe/H]668

diagrams the impact on the gas density is difficult to identify, and the same can be said considering the length of the669

tree.670

Figure 11 can be related to the AMR, since the metallicity is one of the traits in the tree distance matrix. It is671

therefore not surprising that the age-branch length relation will be very similar to the AMR. The tree branch lengths672

incorporate the other chemical abundances, in addition to the Fe, which is why it covers a larger range in chemistry.673

Since we are using all abundances relative to hydrogen, all elements are expected to increase with time, making the674

chemical distance increase in a way that directly relates to the increase in metallicity. This is valid for the studied675

system, which does not experience infall of pristine gas. Moveover, the distance matrix uses [Zn/H], which are also676

produced by SNIa. They follow a comparable evolution to [Fe/H], and cause the relation between branch length and677

age observed in Fig. 11.678

5. PROSPECTS AND LIMITATIONS OF STELLAR PHYLOGENY679

As previously mentioned, stellar phylogeny had already being applied to observational data (Jofré et al. 2017; Jackson680

et al. 2021, Walsen et al. submitted). However, this is the first time it is have been applied to simulations. As this is681

the first study of its kind, using an isolated disc galaxy simulation serves as an ideal test case and a fundamental step682

to mature the method before applying it to more complex systems, that can better represent real galaxies.683

Interactions play an important role in the evolution of galaxies (Toomre 1977; Efstathiou 1990; Barnes & Hernquist684

1992). When a galaxy undergoes mergers, for instance, both its stellar population and gas content experience alter-685

ations (Torrey et al. 2012; Monachesi et al. 2019). Additionally, such events can trigger episodes of star formation,686

further impacting the galaxy’s chemical composition and stellar populations (as illustrated in Di Matteo et al. 2007).687

Consequently, the environment becomes more complex, making the application of stellar phylogeny more delicate.688

We expect that in more complex systems that experience interactions, the results regarding stellar phylogeny can689

possibly be impacted by the mass ratio of the galaxies and also their amount of available gas. While a comprehensive690

investigation into how mergers affect phylogenetic trees is currently a work in progress, we anticipate that a meticulous691

selection of stellar particles or stars (in the case of observational studies) will be fundamental for conducting stellar692

phylogeny in more complex systems. The selection will be crucial both to build phylogenetic trees that are evolutionary693

informative, but also in order to have a robust interpretation of the results.694

Another factor that requires further characterization is how stars born from the same molecular cloud, but having695

different masses can be addressed in stellar phylogenetic studies. The inclusion of stars with a wide range of masses can696

introduce an additional layer of complexity, since different stellar evolution process rule stars with difference masses,697

potentially altering chemical abundances in the atmospheres of stars. Using massive stars might complicate the698

application and interpretation of stellar phylogeny, due to potential alterations in their chemical abundances resulting699

from internal processes, such as mass loss and mixing (Meynet & Maeder 2000; Langer 2012; Martins et al. 2015).700

However, low-mass stars can also have their chemical composition altered by processes such as atomic diffusion and701

rotation (Deal et al. 2020).702
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A better characterization of the limits of chemical tagging would benefit the development of stellar phylogeny. We703

acknowledge the significance of exploring the effects of studying stars from the same molecular cloud but with different704

masses to better characterize this method. However, such an investigation falls outside the scope of this work, since705

here the stellar particles represent stellar populations, where such effects are not included.706

6. SUMMARY AND CONCLUSIONS707

In this study, we investigated phylogenetic signal within a simulated disc galaxy, addressing three specific questions.708

First, we explored the dependence of phylogenetic signal on population density. Second, we investigated the dependence709

of phylogenetic signal on the uncertainties associated with the chemical abundances. Third, we studied the dependence710

of the properties of the phylogenetic trees with different regions of the simulated disc galaxy.711

Approaching the first question, we explored the minimum number of stellar particles required to obtain phylogenetic712

signal and reconstruct the galaxy’s evolutionary history. This was done because it is fundamental to be able to713

differentiate phylogenetic signal from noise and stochasticity. In this analysis we varied the number of stellar particles714

from 10 to 200 and found that using 100 stellar particles allowed for the reconstruction of this galaxy’s history. For715

100 stellar particles, the distributions of Robinson-Foulds distances (RFD) did not overlap when considering trees716

built from simulated and random data. The mean RFD considering trees from simulated samples was 0.93 with717

a standard deviation of 0.01, while the RFD considering trees from random chemical abundances was 0.87 with a718

standard deviation of 0.01. We also observed that the topologies of the trees built using the simulated and random719

data were different, supporting the conclusion that phylogenetic trees from simulated data were significantly different720

from random noise.721

In the second question, we studied the impact of uncertainties in the chemical abundances on the evolutionary history722

portrayed by the phylogenetic trees. In order to do so, we perturbed the chemical abundances of reference phylogenetic723

trees considering uncertainties in the range of 0.01 and 0.3 dex. As the uncertainty in abundances increases, the RFD724

between the original trees and perturbed trees also increases. Trees with uncertainties of 0.01 dex remain similar to the725

original tree having a mean RFD of 0.07 with standard deviation of 0.03, while those with 0.3 dex uncertainties deviate726

significantly, having a mean RFD of 0.50 and standard deviation of 0.04. However, even with uncertainties as high as727

0.3 dex, there was still retrievable phylogenetic signal when considering trees built from random chemical abundances.728

We report that the resolution of phylogenetic trees decreased with higher uncertainties and that the displacement of729

stellar particles within the trees becomes more pronounced as uncertainties increase. Finally we observed that for730

uncertainties below 0.08 dex, we could successfully reconstruct the galaxy’s history, since the uncertainties do not731

significantly affected the age-ranking of nodes in the tree and the polytomies are not the domineering structure of the732

trees.733

In the final question approached in this work, we analyzed whether the evolutionary histories inferred from phy-734

logenetic trees constructed using stellar particles from different regions of the galaxy were consistent with their age-735

metallicity relations (AMR) and star formation histories (SFH). We observed that the trees displayed one primary736

branch, indicating a gradual evolution of a single lineage over time. Also, the trees from the different regions displayed737

rank-ordered ages, with older particles closer to the root. However, there are differences between regions. Cumulative738

distances from the root to stellar particles revealed that the path lengths in the phylogenetic trees were related to739

the SFH. Regions with higher and more extended star formation activity had longer tree path lengths, while regions740

with lower and shorter star formation activity exhibited shorter tree path lengths. The observed differences of the741

cumulative distances achieved a value of 2 dex. The aspect of the path length as a function of ages were also related to742

the AMR of the system, with a sharp increase of the distance from the root associated with periods of rapid chemical743

enrichment. These findings highlight the potential of phylogenetic trees to capture variations in the SFH and AMR744

across different regions of the simulated disc galaxy, providing insights into its chemical and star formation history.745

In summary, this work demonstrated that it is possible to use phylogenetic trees to reconstruct the evolutionary746

history of a simulated disc galaxy. It highlighted the relationship between phylogenetic tree properties and the AMR747

and SFH. This parallel between the phylogenetic trees and the global properties of a galaxy will be particularly useful748

when applying phylogeny to observed data of stars when the method is more mature, since usually the SFH as well as749

AMR of real galaxies are not fully known. We also note that a natural next step to continue this work is to explore750

phylogenetic trees in more realistic simulated galaxies. These results open doors for exploring several other exciting751

questions about archaeology of galaxies and their evolution, both with simulated and observed data applied to stellar752

phylogeny.753
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APPENDIX763

A. TREE COLOURED BY [O/FE]764

Previously in this work we showed the phylogenetic tree of the deterministic sample color-coded according to the765

ages of stellar particles (see Figure 6). In the Figure 12 we present the same tree, but color-coded according to [O/Fe].766

In this tree it is possible to see that there is a section where [O/Fe] is mixed, which might be related to the moment767

in which SNIa events start to occur. This is the same region were the age-ranking in Figure 6 is weaker.768
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Martins, F., Hervé, A., Bouret, J.-C., et al. 2015,889

Astronomy & Astrophysics, 575, A34890

Matsuno, T., Aoki, W., Casagrande, L., et al. 2020, arXiv891

preprint arXiv:2006.03619892

Matteucci, F. 2012, Chemical evolution of galaxies893

(Springer Science & Business Media)894

Meynet, G., & Maeder, A. 2000, arXiv preprint895

astro-ph/0006404896

Mihaescu, R., Levy, D., & Pachter, L. 2009, Algorithmica,897

54, 1898
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